Yahoo Answers akan ditutup pada 4 Mei 2021 dan situs web Yahoo Answers sekarang tersedia dalam mode baca saja. Tidak akan ada perubahan pada properti atau layanan Yahoo lainnya, atau akun Yahoo Anda. Anda dapat memperoleh informasi lebih lanjut tentang penutupan Yahoo Answers dan cara mengunduh data Anda di halaman bantuan ini.
Given Square ABCD. E,F,G,H are points at AD,AB,BC,and CD respectively. If EG=FH, how to prove that area of EFGH= {(FH)^2}/2 ?
2 Jawaban
- Let'squestionLv 77 tahun yang laluJawaban Favorit
Diagonals are equal, I think, only for a rectangle which includes square or for an isosceles trapezium. With this idea one has to think. I shall submit answer later.
Draw diagram place points as described.
Let the distance of E and G from side DC be e, and g respectively.
Note that EG^2 = a^2 + |e-g|^2 ------------------------------ (1)
Similarly, let the distance of F and H from side AD be f, and respectively.
Note that FH^2 = a^2 + |f-h|^2 ---------------------------------(2)
From(1) and (2) as it is given that EG = FH,
|e-g| = |f-h| --------------------------------- (3)or
(e-g) = -(f-h)-------------------------------- (3a) is also a possibility
Area EFGH, say S =a^2 -{Area(AEF)+Area(BFG)+Area(AEF)+Area(CFH)+Area(DHE)|
=a^2 - (1/2)[{(a-e)*f}+{(a-f)(a-g)}+{(a-h)*g} + (h*e)]
=a^2 - (1/2)[(af-ef)*+(a^2)+ fg-af-ag+ag-hg + (h*e)]
=a^2 - (1/2)[(-ef)+(a^2)+ fg -hg + he]
=a^2 - (1/2)[{(g-e)*f}+(a^2) -{h(g-e)}]
=[(a^2)/2] +(1/2)(e-g)(f-h)
= [(a^2)/2] +(1/2)|(f-h)|^2 [Using (3) and (3A) = [(FH^2)/2]
- hiiLv 67 tahun yang lalu
A● E● D●
x 180-x 90
x
H●
I●
F●
B● G● C●
Intersection I
EG = FH ......∠IHD = ∠IEA = x .....EG ⊥ FH
S(EFGH) = FH•EG/2 = (FH)²/2