Yahoo Answers akan ditutup pada 4 Mei 2021 dan situs web Yahoo Answers sekarang tersedia dalam mode baca saja. Tidak akan ada perubahan pada properti atau layanan Yahoo lainnya, atau akun Yahoo Anda. Anda dapat memperoleh informasi lebih lanjut tentang penutupan Yahoo Answers dan cara mengunduh data Anda di halaman bantuan ini.
What is the length of VW from this following cube?
Cube ABCD.EFGH with edge a cm.
P,Q,R,S,T is in the midpoint of AB,CD,EH,AD,and EG.
U at the midpoint of PQ.
UV is projection of UT at EPQH and RW is projection of RS at EPQH.
What is the length of VW?
3 Jawaban
- JohanLv 57 tahun yang laluJawaban Favorit
Answer: VW = 4*a*sqrt(5)/5
Calculation:
If I understand correctly, U is at the center of ABCD, and T is at the center of EFGH.
So we have a rectangle SUTR, with UT = SR = a, and SU = TR = a/2.
Use Pythagoras to calculate RU = a*sqrt(5)/2.
Notice that triangle VRT is congruent with triangle TRU, because angle RVT is a right angle, and angle VRT = angle TRU.
Because of the angle VRT = angle TRU, we can determine that
VR:RT = TR:RU ==>
VR/RT = RT/RU ==> multiply left and right by RT
VR = RT*RT/RU
RT = TR = a/2 and RU = a*sqrt(5)/2 (as already calculated), so
VR = (a/2)*(a/2)/(a*sqrt(5)/2) = (a/2)/sqrt(5) = a/(2*sqrt(5))
multiply nominator and denominator by sqrt(5):
VR = a*sqrt(5)/10
Likewise, because triangle WUS is congruent with SUR, we can determine that WU = a*sqrt(5)/10 = VR.
Now we can determine VW:
VW = RU - VR - WU
= a*sqrt(5) - a*sqrt(5)/10 - a*sqrt(5)/10
= 8*a*sqrt(5)/10
= 4*a*sqrt(5)/5