Yahoo Answers akan ditutup pada 4 Mei 2021 dan situs web Yahoo Answers sekarang tersedia dalam mode baca saja. Tidak akan ada perubahan pada properti atau layanan Yahoo lainnya, atau akun Yahoo Anda. Anda dapat memperoleh informasi lebih lanjut tentang penutupan Yahoo Answers dan cara mengunduh data Anda di halaman bantuan ini.
Show that |x|≤2 => (|2x^2 +3x +2|/|x^2 + 2|) ≤8?
Show that
|x|≤2 => (|2x^2 +3x +2 | /|x^2 + 2|) ≤8
Thanks a lot for your explanation :)
3 Jawaban
- hiiLv 66 tahun yang laluJawaban Favorit
|2x² + 3x + 2| / |x² + 2| ≤ 8
|2x² + 3x + 2| ≤ 8|x² + 2|
8|x² + 2| ≥ |2x² + 3x + 2|
|8x² + 16| ≥ |2x² + 3x + 2|
|8x² + 16|² ≥ |2x² + 3x + 2|²
(8x² + 16)² ≥ (2x² + 3x + 2)²
(8x² + 16 + 2x² + 3x + 2)(8x² + 16 - 2x² - 3x - 2) ≥ 0
(10x² + 3x + 18)(6x²- 3x + 14) ≥ 0
10x² + 3x + 18.....D(discriminant) < 0..........10x² + 3x + 18 > 0
6x²- 3x + 14....D(discriminant) < 0....6x²- 3x + 14 > 0
i.e. |2x² + 3x + 2| ≤ 8|x² + 2| is true for all x.
then |x| ≤ 2 => |2x² + 3x + 2| / |x² + 2| ≤ 8 Edit
- nyc_kidLv 76 tahun yang lalu
Start with the following observations: 2x^2 +3x +2 and x^2 + 2 are always positive. So, the absolute value signs are redundant.
(2x^2 +3x +2)/(x^2 + 2) = 2 + (3x - 2)/(x^2 +2)
You you have to show : (3x - 2)/(x^2 +2) < 6 , or equivalently 6x^2 - 3x + 14 >0
But 6x^2 - 3x + 14 is a parabola with a negative discriminate (=9 - 336 ) , hence always positive.
What this shows that (|2x^2 +3x +2|/|x^2 + 2|) ≤8 for all x ( not just |x|≤2).
- kbLv 76 tahun yang lalu
Suppose that |x| ≤ 2.
Then, |2x² + 3x + 2|/|x² + 2|
= |2x² + 3x + 2|/(x² + 2), since the denominator is positive for all x
≤ |2x² + 3x + 2|/(0 + 2), decreasing the denominator (x² is never negative)
≤ (|2x²| + |3x| + |2|)/2, by the triangle inequality
= (2|x|² + 3|x| + 2)/2
≤ (2 * 2² + 3 * 2 + 2)/2, since |x| ≤ 2
= 8.
Hence, |2x² + 3x + 2|/|x² + 2| ≤ 8.
I hope this helps!